Summary:

The LSU Campus Mounds site (16EBR6), which is located on the campus of Louisiana State University in Baton Rouge, contains two conically shaped mounds (A and B) that range from 5.3 m (17.5 ft) to 5.2 m (17.2 ft) in height and 39.6 m (130.7 ft) to 36.5 m (120.5 ft) in diameter at the base. Although there has been some recent modification to the edges of the mounds, they are in generally excellent condition and well preserved. In 1982 archaeologists and soil scientists extracted soil cores from the top of the mounds to the subsoil below the mounds. Radiometric dating of bulk humate samples taken from the base of Mound A indicate that it was constructed during the Meso-Indian or Archaic period about 5000 years ago. Based on its proximity to Mound A and its similar stratigraphy, archaeologists assume that Mound B was constructed during the same period.

Site Setting and Description:

The LSU Campus Mounds site consists of two conically shaped earthen mounds at the eastern edge of the Pleistocene Prairie terrace. They are located at the corner of Dalrymple Drive and Fieldhouse Drive in the northeast corner of the Louisiana State University campus in Baton Rouge (Figures 1 and 2). While the mounds are within the boundaries of a LSU historic district listed on the National Register, archaeological resources were not addressed in the nomination form. (The district was listed for its architectural significance.)

The northernmost mound, Mound A, is about 5.3 m (17.5 ft) in height and 39.6 m (130.7 ft) in diameter at the base. Mound B, which is located about 18 m (59.5 ft) south of Mound A, is about 5.2 m (17.2 ft) in height and 36.5 m (120.5 ft) in diameter at the base. Originally the mounds were probably higher since it is evident that they have been subject to some erosion. The mounds and the general site area are currently covered in grass, which is periodically mowed. Mound A has a tree growing near the summit on the eastern slope, and Mound B has a tree growing midway up its eastern slope. Because the mounds are on state property they are protected from damage from construction or vandals.

There have been several minor modifications to the site area in recent years. In 1985 sidewalks were constructed between the mounds and a low brick wall was constructed around the mounds. The latter structure was built to prevent the reoccurrence of a tragic accident during which a student was killed by a vehicle riding over the top of Mound B. While the brick walls have prevented any vehicles from riding over the mounds, LSU students and visitors continue to walk, run, and ride bicycles on the mounds, which contributes to their erosion. In 1996 some minor restorations took place on the mounds. LSU Facility Services used river silt to fill in small erosional features that had formed on the summit and slopes of both mounds and then resodded these areas with a hybrid bermuda grass.

Previous Investigations:

To date, archaeologists have not conducted any major excavations of the mounds, but there have been very limited investigations within the mounds and on their peripheries. In 1982 LSU archaeologists and soil scientists used a Giddings Soil Corer to extract six closely spaced soil cores (average diameter=5 cm) from Mound A and three soil cores from Mound B. The cores began at the mound summits and continued through to the subsoil below the mounds. The core lengths ranged in size from about 5.8 m to 6.2 m (19.2-20.5 ft). In 1985 LSU archaeologists conducted limited excavations along the peripheries of the mounds in areas of proposed landscape modifications. They excavated three 1 m x 1 m (3.3 ft x 3.3 ft) units along the western edge of Mound A and two 1 m x 1 m (3.3 ft x 3.3 ft) units along the western edge of Mound B. The units were placed judgmentally where a brick wall was to be constructed around the mounds. Eighteen auger holes were also excavated in the path of the proposed brick wall. In addition, archaeologists excavated six .25 m x .25 m (.83 ft x .83 ft) shovel tests to depths ranging from .7 to 1.2 m (2.3 to 3.9 ft) below surface. The shovel tests were placed where lamp posts were to be built. Archaeologists conducted a proton magnetometer survey across the site area, but the results were inconclusive. Finally, they monitored the excavation of a backhoe trench along the western edge of both trenches where a sidewalk was to be constructed.
The soil from the cores was carefully analyzed and subjected to numerous chemical tests, and pollen was extracted from some of the samples. Unfortunately, the concentration of pollen grains was too low to make conclusive statements about the environment. However, analysis of the soil revealed some interesting stratigraphic variation between the mounds. Mound A contains a number of dark bands with sharp boundaries separating them from heterogeneous zones representing a mixture of different soil horizons (Homburg 1988:95). Archaeologists also noted evidence of basket loading in Mound A, as well as a fired zone, possibly indicative of a fire hearth. By contrast, the Mound B matrix appeared relatively homogeneous and contained numerous thin gray bands, primarily in the lower part of the fill (Homburg 1988:95). There are, however, two important similarities between the mound profiles. First, both mounds are underlain by a buried soil, which appears to have been borrowed from to construct the mounds. The E horizon of this buried soil is present below both mounds, but the A horizon is only present below Mound A. Second, analysis of the soil chemistry and stratigraphy of both mounds indicates that they were probably built in single construction stages.

The most common profile in the test pits and the backhoe trench consisted of three basic strata: 1) an A and A/E horizon (ca. .35 m [1.2 ft] thick) of dark brown silt loam; 2) an E/A and E horizon of yellowish brown silt loam (ca. .3 m [1 ft] thick); and 3) a B horizon (ca. .55 m [1.8 ft] thick) of dark yellowish brown silt loam, superimposed with argillic (Bt) and fragic (Bx) horizons.

All five test pits contained prehistoric and historic artifacts and virtually all of them were found in the A horizon. Only one artifact was found in the shovel test pits and only one artifact was found in the auger holes. None of the excavations revealed cultural features. The artifacts included 21 lithics (i.e., debitage, some culturally modified red ochre, and a core/pebble tool), 28 sherds (i.e., 27 Baytown Plain, variety unspecified and one Coles Creek Incised, variety Coles Creek), and 730 historic artifacts dating to the late nineteenth century and twentieth century (i.e., ceramics, glass, metal, wood, animal bone, recently deposited shell). The prehistoric artifacts probably date to a minor Coles Creek occupation (A.D. 700-1100) of the site area.

Radiometric Dating:

The most significant result of the various investigations of 16EBR6 has been the radiometric dating of soil humates from Mound A. In 1982 LSU archaeologists and soil scientists submitted bulk humate samples from three Mound A core samples. The samples were taken from the lower portion of the Mound A profile and the underlying buried A horizon. The three samples indicate that Mound A dates to around 5000 B.P. (Homburg 1993:187). A conservative calibrated estimate of the age of Mound A is roughly between 5250 B.P. and 4800 B.P. (Homburg 1993:191), which dates the construction of the mound to the Archaic or Meso-Indian period. Archaeologists believe that Mound B probably also dates to this general period.

However, the dates from Mound A are not without controversy. Jones (1993:173) argues that they are very problematic since the soil samples which were assayed combined humates from two distinct stratigraphic contexts, i.e., the base of the mound and the underlying buried A horizon. Consequently, Jones (1993:173) argues that the samples are “dating two very different types of soil with two distinct origins in a single sample.” In a response to Jones’ article, Homburg (1993:185) argues that the Mound A dates are reliable because “the mound was built from local sediment, essentially in one construction stage, it is reasonable to conclude that the age of the soil humates in the lower mound fill is essentially the same as the underlying A horizon” (Homburg 1993:185). In general, other archaeologists who have examined these data agree that in the absence of evidence to the contrary, the best estimated age for the LSU campus mounds is about 5000 B.P. (e.g., Saunders 1994:123).

Significant Date: 3,000 B.C. - 2,000. B.C.
Architect/Builder: NA
Criterion: D
16EBR6 is a very important prehistoric site since the radiometric dates from Mound A indicate that the site dates to about 5000 years B.P., which is the Middle Archaic period in Louisiana (Saunders and Allen 1997). To date, Middle Archaic mounds have only been identified in Louisiana and Florida. These mound complexes are older than any known in North America, Mesoamerica, and South America. These sites have radically changed archaeologists understanding of North American prehistory since planned large-scale earthworks were previously considered to be beyond the leadership and organizational skills of the seasonally mobile hunter-gatherers of the Archaic period (Saunders et al. 1997). 16EBR6 is one of eight Middle Archaic mound complexes that have been identified in Louisiana (Figure 3). Only six of them are extant today.

Since only very limited investigations have occurred in and around the LSU Campus mounds, it is necessary to infer their contents from the archaeological excavations of other Archaic period mounds in Louisiana. The most thoroughly investigated Archaic mound complex is Watson Brake (16OU175) in northeast Louisiana (Saunders and Allen 1997; Saunders et al. 1997). Artifacts recovered from this site include lithics (i.e., blades, projectile points, debitage), fired earthen objects (i.e., mostly block forms, also spherical objects), fire cracked rock, faunal bone, and charred seeds. The seeds (e.g., goosefoot) include weedy annuals that later became the first domesticates in North America. Fired places or hearths were also found. Excavations from other archaic period mounds have produced similar assemblages, but other sites have contained tubular and animal shaped beads, and one site (16EBR17, the Monte Sano site) contained a rectangular structure at its base and the possible remains of a human cremation. Since the LSU campus mounds are extremely well preserved, they should contain a similar array of artifacts that would contribute enormously to our understanding of Archaic lifeways. Therefore, the LSU Campus Mounds are of national significance and can contribute to our overall understanding of Archaic culture in Louisiana and North America.

BIBLIOGRAPHY

Homburg, J. A.
1988 Archaeological Investigations at the LSU Campus Mounds Site. Louisiana Archaeology 15:31-204.

Jones, D.

Jeter, M., J. Rose, G. Williams, Jr., and A. Harmon
1989 Archeology and Bioarchaeology of the Lower Mississippi Valley and Trans-Mississippi South in Arkansas and Louisiana. Arkansas Archeological Survey Research Series No. 37, Fayetteville.

Neuman, R. W.

Pringle, H.

Saunders, J. and T. Allen

Saunders, R.

Smith, S., P. Rivet, K. Byrd, and N. Hawkins
1983 *Louisiana's Comprehensive Archaeological Plan.* State of Louisiana, Department of Culture, Recreation and Tourism, Office of Cultural Development, Division of Archaeology, Baton Rouge.